Monte Carlo simulation studies of EEG and MEG localization accuracy.
نویسندگان
چکیده
Both electroencephalography (EEG) and magnetoencephalography (MEG) are currently used to localize brain activity. The accuracy of source localization depends on numerous factors, including the specific inverse approach and source model, fundamental differences in EEG and MEG data, and the accuracy of the volume conductor model of the head (i.e., the forward model). Using Monte Carlo simulations, this study removes the effect of forward model errors and theoretically compares the use of EEG alone, MEG alone, and combined EEG/MEG data sets for source localization. Here, we use a linear estimation inverse approach with a distributed source model and a realistic forward head model. We evaluated its accuracy using the crosstalk and point spread metrics. The crosstalk metric for a specified location on the cortex describes the amount of activity incorrectly localized onto that location from other locations. The point spread metric provides the complementary measure: for that same location, the point spread describes the mis-localization of activity from that specified location to other locations in the brain. We also propose and examine the utility of a "noise sensitivity normalized" inverse operator. Given our particular forward and inverse models, our results show that 1) surprisingly, EEG localization is more accurate than MEG localization for the same number of sensors averaged over many source locations and orientations; 2) as expected, combining EEG with MEG produces the best accuracy for the same total number of sensors; 3) the noise sensitivity normalized inverse operator improves the spatial resolution relative to the standard linear estimation operator; and 4) use of an a priori fMRI constraint universally reduces both crosstalk and point spread.
منابع مشابه
Spatiotemporal imaging of human brain activity using functional MRI constrained magnetoencephalography data: Monte Carlo simulations.
The goal of our research is to develop an experimental and analytical framework for spatiotemporal imaging of human brain function. Preliminary studies suggest that noninvasive spatiotemporal maps of cerebral activity can be produced by combining the high spatial resolution (millimeters) of functional MRI (fMRI) with the high temporal resolution (milliseconds) of electroencephalography (EEG) an...
متن کاملError bounds for EEG and MEG dipole source localization.
General formulas are presented for computing a lower bound on localization and moment error for electroencephalographic (EEG) or magnetoencephalographic (MEG) current source dipole models with arbitrary sensor array geometry. Specific EEG and MEG formulas are presented for multiple dipoles in a head model with 4 spherical shells. Localization error bounds are presented for both EEG and MEG for ...
متن کاملBayesian multi--dipole localization and uncertainty quantification from simultaneous EEG and MEG recordings
We deal with estimation of multiple dipoles from combined MEG and EEG time–series. We use a sequential Monte Carlo algorithm to characterize the posterior distribution of the number of dipoles and their locations. By considering three test cases, we show that using the combined data the method can localize sources that are not easily (or not at all) visible with either of the two individual dat...
متن کاملLocalization of electron virtual SSD in a Siemens-Primus linear accelerator: Comparison of measurements with Monte Carlo simulation
Introduction: Because of importance of impact of the Source to Surface Distance (SSD) in determining of monitor unit for electron-therapy, it is essential to know the Virtual Source Position (VSP) for electron beam for a linear therapeutic accelerator for each energy and field size. , especially using the Khan method (photo distance squared method) And compare the results with...
متن کاملApplying Point Estimation and Monte Carlo Simulation Methods in Solving Probabilistic Optimal Power Flow Considering Renewable Energy Uncertainties
The increasing penetration of renewable energy results in changing the traditional power system planning and operation tools. As the generated power by the renewable energy resources are probabilistically changed, the certain power system analysis tolls cannot be applied in this case. Probabilistic optimal power flow is one of the most useful tools regarding the power system analysis in presen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Human brain mapping
دوره 16 1 شماره
صفحات -
تاریخ انتشار 2002